|
1: |
|
eq(0,0) |
→ true |
2: |
|
eq(0,s(Y)) |
→ false |
3: |
|
eq(s(X),0) |
→ false |
4: |
|
eq(s(X),s(Y)) |
→ eq(X,Y) |
5: |
|
le(0,Y) |
→ true |
6: |
|
le(s(X),0) |
→ false |
7: |
|
le(s(X),s(Y)) |
→ le(X,Y) |
8: |
|
min(cons(0,nil)) |
→ 0 |
9: |
|
min(cons(s(N),nil)) |
→ s(N) |
10: |
|
min(cons(N,cons(M,L))) |
→ ifmin(le(N,M),cons(N,cons(M,L))) |
11: |
|
ifmin(true,cons(N,cons(M,L))) |
→ min(cons(N,L)) |
12: |
|
ifmin(false,cons(N,cons(M,L))) |
→ min(cons(M,L)) |
13: |
|
replace(N,M,nil) |
→ nil |
14: |
|
replace(N,M,cons(K,L)) |
→ ifrepl(eq(N,K),N,M,cons(K,L)) |
15: |
|
ifrepl(true,N,M,cons(K,L)) |
→ cons(M,L) |
16: |
|
ifrepl(false,N,M,cons(K,L)) |
→ cons(K,replace(N,M,L)) |
17: |
|
selsort(nil) |
→ nil |
18: |
|
selsort(cons(N,L)) |
→ ifselsort(eq(N,min(cons(N,L))),cons(N,L)) |
19: |
|
ifselsort(true,cons(N,L)) |
→ cons(N,selsort(L)) |
20: |
|
ifselsort(false,cons(N,L)) |
→ cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L))) |
|
There are 16 dependency pairs:
|
21: |
|
EQ(s(X),s(Y)) |
→ EQ(X,Y) |
22: |
|
LE(s(X),s(Y)) |
→ LE(X,Y) |
23: |
|
MIN(cons(N,cons(M,L))) |
→ IFMIN(le(N,M),cons(N,cons(M,L))) |
24: |
|
MIN(cons(N,cons(M,L))) |
→ LE(N,M) |
25: |
|
IFMIN(true,cons(N,cons(M,L))) |
→ MIN(cons(N,L)) |
26: |
|
IFMIN(false,cons(N,cons(M,L))) |
→ MIN(cons(M,L)) |
27: |
|
REPLACE(N,M,cons(K,L)) |
→ IFREPL(eq(N,K),N,M,cons(K,L)) |
28: |
|
REPLACE(N,M,cons(K,L)) |
→ EQ(N,K) |
29: |
|
IFREPL(false,N,M,cons(K,L)) |
→ REPLACE(N,M,L) |
30: |
|
SELSORT(cons(N,L)) |
→ IFSELSORT(eq(N,min(cons(N,L))),cons(N,L)) |
31: |
|
SELSORT(cons(N,L)) |
→ EQ(N,min(cons(N,L))) |
32: |
|
SELSORT(cons(N,L)) |
→ MIN(cons(N,L)) |
33: |
|
IFSELSORT(true,cons(N,L)) |
→ SELSORT(L) |
34: |
|
IFSELSORT(false,cons(N,L)) |
→ SELSORT(replace(min(cons(N,L)),N,L)) |
35: |
|
IFSELSORT(false,cons(N,L)) |
→ REPLACE(min(cons(N,L)),N,L) |
36: |
|
IFSELSORT(false,cons(N,L)) |
→ MIN(cons(N,L)) |
|
The approximated dependency graph contains 5 SCCs:
{21},
{22},
{23,25,26},
{27,29}
and {30,33,34}.